Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects.
نویسندگان
چکیده
PURPOSE We determined the time lag between loss of retinal ganglion cell function and retinal nerve fiber layer (RNFL) thickness. METHODS Glaucoma suspects were followed for at least four years. Patients underwent pattern electroretinography (PERG), optical coherence tomography (OCT) of the RNFL, and standard automated perimetry testing at 6-month intervals. Comparisons were made between changes in all testing modalities. To compare PERG and OCT measurements on a normalized scale, we calculated the dynamic range of PERG amplitude and RNFL thickness. The time lag between function and structure was defined as the difference in time-to-criterion loss between PERG amplitude and RNFL thickness. RESULTS For PERG (P < 0.001) and RNFL (P = 0.030), there was a statistically significant difference between the slopes corresponding to the lowest baseline PERG amplitude stratum (≤50%) and the reference stratum (>90%). Post hoc comparisons demonstrated highly significant differences between RNFL thicknesses of eyes in the stratum with most severely affected PERG (≤50%) and the two strata with least affected PERG (>70%). Estimates suggested that the PERG amplitude takes 1.9 to 2.5 years to lose 10% of its initial amplitude, whereas the RNFL thickness takes 9.9 to 10.4 years to lose 10% of its initial thickness. Thus, the time lag between PERG amplitude and RNFL thickness to lose 10% of their initial values is on the order of 8 years. CONCLUSIONS In patients who are glaucoma suspects, PERG signal anticipates an equivalent loss of OCT signal by several years.
منابع مشابه
Stem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملImaging and Navigation
Glaucoma is a progressive, multifactorial optic neuropathy characterised by acquired atrophy of the optic nerve due to the loss of retinal ganglion cells and their axons in the retina. Thus, evaluation of the retinal nerve fibre layer (RNFL) is key to diagnosing and monitoring changes in patients with glaucoma. Until recently, red-free fundus photographs were the clinical standard for evaluatin...
متن کاملAssessment of Clinical and Imagistic Structural Progression in Glaucoma.
Glaucoma is a progressive optic neuropathy, characterized by loss of retinal ganglion cells and retinal nerve fiber layer as well as visual field loss. Therefore, in glaucoma, the correlation between structure and function is important, since it can be useful for tracking glaucomatous changes and for following the progression of the disease.
متن کاملQuadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma
It is difficult to detect visual function deficits in patients at risk for glaucoma (glaucoma suspects) and at early disease stages with conventional ophthalmic tests such as perimetry. To this end, we introduce a novel quadrant field measure of the melanopsin retinal ganglion cell mediated pupil light response corresponding with typical glaucomatous arcuate visual field defects. The melanopsin...
متن کاملFunctional and structural changes in a canine model of hereditary primary angle-closure glaucoma.
PURPOSE To characterize functional and structural changes in a canine model of hereditary primary angle-closure glaucoma. METHODS Intraocular pressure (IOP) was evaluated with tonometry in a colony of glaucomatous dogs at 8, 15, 18, 20, and 30 months of age. Retinal function was evaluated using electroretinography (scotopic, photopic, and pattern). Examination of anterior segment structures w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2013